Inhibition of spinal UCHL1 attenuates pain facilitation in a cancer-induced bone pain model by inhibiting ubiquitin and glial activation.


The present study examined alterations of spinal ubiquitin C-terminal hydrolase L1 (UCHL1), ubiquitin expression and glial activation in the cancer-induced bone pain rats. Furthermore, whether inhibition of spinal UCHL1 could alleviate cancer-induced bone pain was observed. The CIBP model was established by intrathecal Walker 256 mammary gland carcinoma cells in SD rats. The rats of CIBP developed significant pain facilitation in the Von Frey test. Double immunofluorescence analyses revealed that in the spines of CIBP rats, ubiquitin co-localized with NeuN, Iba-1 or GFAP; UCHL1 and NeuN were co-expressed and UCHL1 also co-localized with ubiquitin. The CIBP model induced up-regulation of ubiquitin and UCHL1 in the spines, as well as glial activation. Inhibition of spinal UCHL1 attenuated pain facilitation by down-regulation of ubiquitin expression and glial activation. in the CIBP rats. Our data suggests that UCHL1/ubiquitin distributed and increased in the spines of CIBP rats, that glial activation also increased in the CIBP model and that inhibition of spinal UCHL1 may be an effective method to alleviate cancer-induced bone pain.


    0 Figures and Tables

      Download Full PDF Version (Non-Commercial Use)